If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3w^2+10w-13=0
a = 3; b = 10; c = -13;
Δ = b2-4ac
Δ = 102-4·3·(-13)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-16}{2*3}=\frac{-26}{6} =-4+1/3 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+16}{2*3}=\frac{6}{6} =1 $
| 10x-55=5 | | 12/x+5=3/4 | | 14+3x=56 | | x+139+50=180 | | 9v^2+3=201 | | f/24=27 | | 6r-3=69 | | 9=-3–3r | | -4=m-2 | | 3×7b×b=84 | | 7(7+5n)=-259 | | 4x=32 | | 0.6(x)=72 | | 4+18x=22 | | -6=90-12x | | 5x+6=27 | | 34+2x=72 | | 19x-49=360 | | (2x)x*3=294 | | t-25=7 | | 40x+15=100 | | 8k^2=-144 | | x+(x+3)+81=180 | | 3y+17=5y+11 | | 5x-65=3x-25 | | -16=-4g | | 3n^2+8=83 | | 6.x+5=65 | | 0=-16t2+60t+6 | | T=2n+2 | | (9x+14)=(14x-1) | | 5x+8=38 |